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Abstract 

The article presents the mathematical model for defining rational constructional and technological parameters of marshalling 
equipment with the application of gravitational target car braking. In contrast to the existing ones, the realization of the given 
model will allow a complex approach to defining the height and longitudinal profile of the hump yard for applying the 
technology of gravitational target regulation of car speed. This construction of hump yards is characterized by a special 
construction of plan and longitudinal profile. The authors believe that it will contribute to reducing operational expenses on 
compensation of expenditure on damaging cars and freight, electricity, required for regulating the speed of retarders, and to 
reducing extra costs connected with stock lay-over in the pool waiting for breaking-up.  
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1. Introduction 

Nowadays the world market of energy resources is characterized by the constant rise in their cost. Consequently, 
it is obviously necessary to increase the efficiency of every production process. In the railway field, whose main 
competitor is automobile transport, the problem of searching possibilities to reduce the freight transportation rates is 
absolutely urgent. It is known that one of the main constituents of the freight transportation rate is the expenses 
caused by keeping the freight at the railroad yards [1]. Especially it concerns the cost of marshalling process. Most 
of the hump yards in European countries are equipped with beam pressing retarders that cost around $100.000. 
Taking into account that amortization expenses, spare details and maintenance of retarders are directly proportional 
to their cost, pressing need obviously appears to search for possibilities to reduce the prime cost of processing freight 
car traffic volume at hump yards. Moreover, in most cases cars undergo several processing's at hump yards on their 
way from exit to receiving stations. 

2. Analysis of the previous researches 

Nowadays there are a lot of researches aimed at increasing energy efficiency of the marshalling process by 
rationalizing the profile and the construction plan of a hump yard, developing car retarders, marshalling process 
automation systems and retarder braking modes [2-7]. 

Besides, there is an opinion that effectiveness of marshalling process greatly depends on a range of factors that 
are difficult to take into account by formalization or prognostication [8]. First of all, it concerns technical condition 
of car retarders, marshalling process automation equipment and condition of car mounted wheels. Furthermore, the 
so called «human factor» (we mean skill level of operators of retarder positions) also essentially influences the 
effectiveness of marshalling process and remains to be an area of concern. 

The analysis of the abovementioned scientific works allows concluding that so far the problem of formalization or 
prognostication of the factors referred above has not been solved and remains topical.  

The fairly-proved solution to this problem is applying the innovation technology of gravitational target braking of 
retarders [8]. In the framework of its realization there was suggested a special construction of the longitudinal profile 
and plan of a hump yard (see Fig.1). 

The picture illustrates that in our case a part or the whole section of the switching area (SA) together with the 
beginning of the marshalling track section up to stock retarder position (SRP) is located on the rise in contrast to the 
traditional construction of the longitudinal profile of the hump yard with the realization of the interval target braking 
technology. All the other elements on the section from the hump apex (HA) to the reference point (RP) are located 
on the slope. Moreover, attention should be paid to the fact that realization of the gravitational target braking 
technology requires only the stock retarder position, functional purpose of which is the same as while the realization 
of the interval target braking. The only difference lies in the fact that SRP must be equipped with powerful car 
retarders. 

Checking dynamic properties of the longitudinal profile we have found out that the necessary time intervals 
between cars, which roll down in consecutive order, are ensured by the special construction of the descending part 
profile and are sufficient to operate switchers from one position to another. Locating some elements of the profile on 
the rise allows reducing excessive kinetic energy of cars when they enter the section of the stock retarder position 
(in other words, gravitational effect appears). 

To draw a final conclusion as for practicability to apply some marshalling equipment with gravitational target 
braking of retarders a detailed feasibility study is necessary. Meanwhile, there is a working hypothesis that under the 
conditions of automation of car processing process the saving rate with progressive total during the calculation 
period of the analyzed hump yard operation will overtop the saving rate with progressive total during the same 
period of traditional automated hump yard operation, no matter that capital investments in the means for regulating 
the speed of car retarders rolling can be preliminary estimated twice as much as while using a hump yard with 
gravitational target car braking (extra capital investment in automation devices when using a traditionally 
constructed hump yard can exceed the investment in car retarders). 

Moreover, it is expected that it will contribute to reducing the operational expenses on compensation of 
expenditure on damaging cars and freight (if there are better conditions for improving the quality of regulating the 
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speed of retarders rolling down), electricity, required for this regulating (car retarders can contribute to reducing the 
air expenditure), and to reducing extra costs connected with stock lay-over in the pool waiting for breaking-up 
(owing to possible minimization of the hump interval duration at the expense of reducing the volumes of shunting 
when settling cars at the car yard and if there is no need to eliminate the aftereffects of retarders regaining speed). 

 

 
Fig. 1. General view of the longitudinal profile and a hump yard construction plan for 

 realization of the gravitational target car braking technology. 
 
However, nowadays there does not exist a method to get optimal design values of a hump yard with the 

realization of the gravitational target car braking.  

3. The purpose of the article 

The aim of the article is to develop a mathematical model for defining optimal structural parameters of hump 
yards that ensure the realization of the gravitational target car braking and absolute fulfillment of safety conditions 
as well as reliability of marshalling process. 

4. The criterions for optimization 

First of all, it is necessary to define the criterion for optimization the structural parameters of hump yards that 
ensure the realization of the gravitational target braking. It is known that costs of car retarders servicing are among 
the highest in the marshalling process. Moreover, we have already mentioned their high price. Thus, using less car 
retarders on a hump yard it is possible to significantly reduce operating costs of marshalling process. So, we suggest 
choosing the necessary power of the stock retarder position as a criterion for optimization the structural parameters 
of hump yards. 

The quantity and power of car retarders at a hump yard is determined by the requirements of the set technological 
modes of work (which are mostly characterized by breaking-up design speed), safety conditions for gravity 
shunting, reliability demands and durability of the technological system regulating car speed that is designed (taking 
into account further automation of marshalling process) and depends on the hump yard height, quantity of groups of 
tracks and quantity of tracks in these groups, the structure of car traffic volume under processing, etc. (1). 
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Total required power of the gravitation breaking gear, kJ/kN, en-route of the rolling down car with good rolling 
qualities from the hump apex to the beginning of the stock retarder position, is defined using the formula (1). 
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where jj iL , – the length of the hump profile and gradient of its n-part respectively. 

Thereby, in the final accounting, value SRPH  depends on the gradient values of the certain parts of hump yard 
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the hump yard it is necessary to define the optimal values of its profile elements gradient.  
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where Z – the number of elementary sections, on which the technological element is subdivided (calculating a
avV ,    

the length of the elementary section is taken 0.5 m, that is 5,0/ ZL ). 
The average speed on the technological element is defined using the following formula: 
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The correction factor by different begV , showed that it can be set as an exponential function 
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As every profile element consists of several technological elements, we can indicate: 
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Minimization of the objective function is necessary by non-linear restriction-equalities: 
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5. Conclusion 

The problem researched in the article is an optimization problem with restrictions. It is impossible to turn this 
problem into the unconditional extreme problem [9]. Therefore, further researches are required to find a method, 
which will allow defining the minimum value SRPH with the minimal enumeration of possible values xIII ,...,, 21 . 
The solution of this problem will contribute to deciding the question of the integrated design of the height and 
longitudinal profile of hump yards to realize the gravitational target car braking technology with the minimally 
required power of the stock retarder position. In its turn, it will allow adjusting power inputs, which accompany the 
marshalling process, in accordance with the rate of yard operation. 
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